84 research outputs found

    Last-touch correlated data streaming

    Get PDF
    Recent research advocates address-correlating predictors to identify cache block addresses for prefetch. Unfortunately, address-correlating predictors require correlation data storage proportional in size to a program's active memory footprint. As a result, current proposals for this class of predictor are either limited in coverage due to constrained on-chip storage requirements or limited in prediction lookaheaddue to long off-chip correlation data lookup. In this paper, we propose Last-Touch Correlated Data Streaming (LT-cords), a practical address-correlating predictor. The key idea of LT-cords is to record correlation data off chip in the order they will be used and stream them into a practicallysized on-chip table shortly before they are needed, thereby obviating the need for scalable on-chip tables and enabling low-latency lookup. We use cycle-accurate simulation of an 8-way out-of-order superscalar processor to show that: (1) LT-cords with 214KB of on-chip storage can achieve the same coverage as a last-touch predictor with unlimited storage, without sacrificing predictor lookahead, and (2) LT-cords improves performance by 60% on average and 385% at best in the benchmarks studied. © 2007 IEEE

    Reactive NUCA: Near-Optimal Block Placement and Replication in Distributed Caches

    Get PDF
    Increases in on-chip communication delay and the large working sets of server and scientific workloads complicate the design of the on-chip last- level cache for multicore processors. The large working sets favor a shared cache design that maximizes the aggregate cache capacity and minimizes off-chip memory requests. At the same time, the growing on-chip communication delay favors core-private caches that replicate data to minimize delays on global wires. Recent hybrid proposals offer lower average latency than conventional designs, but they address the placement requirements of only a subset of the data accessed by the application, require complex lookup and coherence mechanisms that increase latency, or fail to scale to high core counts. In this work, we observe that the cache access patterns of a range of server and scientific workloads can be classified into distinct classes, where each class is amenable to different block placement policies. Based on this observation, we propose Reactive NUCA (R- NUCA), a distributed cache design which reacts to the class of each cache access and places blocks at the appropriate location in the cache. R-NUCA cooperates with the operating system to support intelligent placement, migration, and replication without the overhead of an explicit coherence mechanism for the on-chip last-level cache. In a range of server, scientific, and multi-programmed workloads, R-NUCA matches the performance of the best cache design for each workload, improving performance by 14% on average over competing designs and by 32% at best, while achieving performance within 5% of an ideal cache design

    Near-Optimal Cache Block Placement with Reactive Nonuniform Cache Architectures

    Get PDF
    The growing core counts and caches of modern processors result in data access latency becoming a function of the data's physical location in the cache. Thus, the placement of cache blocks determines the cache's performance. Reactive nonuniform cache architectures (R-NUCA) achieve near-optimal cache block placement by classifying blocks online and placing data close to the cores that use them

    Toward Dark Silicon in Servers

    Get PDF
    Server chips will not scale beyond a few tens to low hundreds of cores, and an increasing fraction of the chip in future technologies will be dark silicon that we cannot afford to power. Specialized multicore processors, however, can leverage the underutilized die area to overcome the initial power barrier, delivering significantly higher performance for the same bandwidth and power envelopes

    TurboTag: Lookup Filtering to Reduce Coherence Directory Power

    Get PDF
    On-chip coherence directories of today’s multi-core systems are not energy efficient. Coherence directories dissipate a significant fraction of their power on unnecessary lookups when running commercial server and scientific workloads. These workloads have large working sets that are beyond the reach of on-chip caches of modern processors. Limited to capturing a small part of the working set, private caches retain cache blocks only for a short period of time before replacing them with new blocks. Moreover, coherence enforcement is a known performance bottleneck of multi-threaded software, hence data-sharing in optimized high-performance software is minimal. Consequently, the majority of the accesses to the coherence directory find no sharers in the directory because the data are not available in the on-chip private caches, effectively wasting power on the coherence checks. To improve energy-efficiency for future many-core systems, we propose TurboTag, a filtering mechanism to eliminate needless directory lookups. We analyze full-system traces of server and scientific workloads and find that over 69% of accesses to the directory find no sharers and can be entirely avoided. Taking advantage of this behavior, TurboTag achieves a 58% reduction in the directory’s dynamic power consumption

    Cuckoo Directory: A Scalable Directory for Many-Core Systems

    Get PDF
    Growing core counts have highlighted the need for scalable on-chip coherence mechanisms. The increase in the number of on-chip cores exposes the energy and area costs of scaling the directories. Duplicate-tag based directories require highly associative structures that grow with core count, precluding scalability due to prohibitive power consumption. Sparse directories overcome the power barrier by reducing directory associativity, but require storage area over-provisioning to avoid high invalidation rates. We propose the Cuckoo directory, a power- and area-efficient scalable distributed directory. The cuckoo directory scales to high core counts without the energy costs of wide associative lookup and without gross capacity over-provisioning. Simulation of a 16-core CMP with commercial server and scientific workloads shows that the Cuckoo directory eliminates invalidations while being up to four times more power efficient than the Duplicate-tag directory and 24% more power-efficient and up to seven times more area efficient than the Sparse directory organization. Analytical projections indicate that the Cuckoo directory retains its energy and area benefits with increasing core count, efficiently scaling to at least 1024 cores

    Making Address-Correlated Prefetching Practical

    Get PDF
    Despite a decade of research demonstrating its efficacy, address-correlated prefetching has never been implemented in a shipping processor because it requires megabytes of metadata—too large to store practically on chip. New storage-, latency-, and bandwidth-efficient mechanisms for storing metadata off chip yield a practical design that achieves 90 percent of the performance potential of idealized on-chip metadata storage

    Additive manufacturing of solid diffractive optical elements via near index matching

    Full text link
    Diffractive optical elements (DOEs) have a wide range of applications in optics and photonics, thanks to their capability to perform complex wavefront shaping in a compact form. However, widespread applicability of DOEs is still limited, because existing fabrication methods are cumbersome and expensive. Here, we present a simple and cost-effective fabrication approach for solid, high-performance DOEs. The method is based on conjugating two nearly refractive index-matched solidifiable transparent materials. The index matching allows for extreme scaling up of the elements in the axial dimension, which enables simple fabrication of a template using commercially available 3D printing at tens-of-micrometer resolution. We demonstrated the approach by fabricating and using DOEs serving as microlens arrays, vortex plates, including for highly sensitive applications such as vector beam generation and super-resolution microscopy using MINSTED, and phase-masks for three-dimensional single-molecule localization microscopy. Beyond the advantage of making DOEs widely accessible by drastically simplifying their production, the method also overcomes difficulties faced by existing methods in fabricating highly complex elements, such as high-order vortex plates, and spectrum-encoding phase masks for microscopy
    • …
    corecore